Saturday, November 11, 2017

IoT Eco System and IoT Gateway security



Cybercriminals have an array of potential attack vectors to choose from when targeting IoT implementations. Here’s how to work towards comprehensive security in Internet of Things applications.
The Internet of Things may have a significant economic potential, but it also gives malicious actors an ever-expanding toolbox for cyber attacks. Gartner estimates that 5.5 million “things” get connected each day. It’s no wonder that hackers are beginning to target IoT devices with weak security for botnets and other attacks: they are often low-hanging fruit.
As both physical and digital threats increase, the need to find technologies to reduce such risks is also rising. This article will discuss the vulnerable points in an IoT application and the key strategies to resolve them, including details on maintaining supply chain integrity. It will also cover the fundamental elements needed to create a robust security paradigm.

Potential attacks for IoT applications

A handful of IoT-related attacks seem to receive the most attention in the popular press. There is, of course, the Mirai botnet that brought down a chunk of the internet last year. There’s BrickerBot, which renders insecure IoT devices unusable. On the industrial side, Stuxnet is famous for causing physical damage to nuclear centrifuges in Iran. And then there is BlackEnergy — a malware variant that shut down a portion of Ukraine’s power grid.
Attacks with a physical component: IoT attacks at the physical layer of the OSI Model require unauthorized access to physical sensing, actuation and control systems. Consider how electronic car theft works as an example. Since cars are essentially computers on wheels, hackers have a variety of options at their disposal. They can clone the radio signals from a key fob to open a locked vehicle. A hacker with physical access to a vehicle’s Controller Area Network (CAN) bus underneath the steering wheel can cause all sorts of mischief: They can unlock the car’s immobilizer that stops a thief from driving away and reprogram a new key for the vehicle. Access to the CAN bus could also enable them to hack the speedometer, door locks and other components.
The similar threat applies to industrial control systems, which have a decades-long history. Many industrial machines make use of supervisory control and data acquisition (SCADA), a technology that was created decades ago without much thought about security. As a result, an attacker with physical access to a SCADA system can cause significant damage to industrial facilities and critical infrastructure.
Similar threats could apply to medical devices. An attacker could gain access to an implantable device such as a cardioverter defibrillator or an external medical device such as an insulin pump to install malware.
Pure software attacks: This category includes malware variants such as viruses and trojans and worms. Also in this category is fuzzing, in which random data is thrown at software to see how it reacts. Distributed Denial of Service (DDoS) attacks can be software-based as well, although they can also occur at lower levels of the OSI Model. One potential example of an IoT-related DDoS risk would be safety-critical information such as warnings of a broken gas line that can go unnoticed through a DDoS attack of IoT sensor networks.
Network attacks: One of the biggest vulnerabilities of IoT devices is their wireless connectivity, which can make them remotely exploitable. Here, there are a variety of possible attacks that are possible on the devices, or “nodes,” connected to the network.
In an enterprise Internet of Things context, those nodes typically communicate with the gateway that is the core of that implementation. The node connects all of the IoT devices to the cloud.
Let’s assume that we have an industrial IoT application with interconnected gateways linked to each other in a mesh network. If a hacker jams the functionality of a gateway with denial of service requests, they can bring down the whole IoT project. Thus, a single attacker can stop the IT and OT elements of a system from interacting, as we discussed in the article “IoT gateway architecture: Clustering ensures reliability.” 
Cryptanalysis attack: In this type of exploit, a hacker tries to recover an encrypted message without access to an encryption key. Examples include brute-force attacks when a hacker tries every possible password combination to gain access to a system. The known-plaintext attack, with roots stretching back to WWII, is another example, in which a hacker has access to unencrypted text as well as its....Continue reading
Article By : Mohiit Bhardwaj

No comments:

Post a Comment

Latest Post

Exploring New Horizons: Chandrayaan-3 Mission Unveiled

You can find the Official brochure of Chandrayan3  or here in link https://www.isro.gov.in/media_isro/pdf/Missions/LVM3/LVM3M4_Chandrayaan3_...